RELATIVISTIC QUANTUM MECHANICS

Thursday 06-04-2014, 09.00-12.00

Write your name and student number on all sheets. The total number of points is 90. You can earn 5 points for each subquestion, except for 2b, 2d, 3a and 3b (10 points) and 4c (15 points).

Use conventions with $\hbar = c = 1$.

PROBLEM 1: HARMONIC OSCILLATOR

Comment in one or two lines on the difference or similarity between the quantum-mechanical system of the harmonic oscillator and a free field theory regarding:

- a. the structure of ladder operators,
- b. the number of ladders,
- c. the frequency and energy spacing of ladders.

PROBLEM 2: FOURIER TRANSFORMATIONS

Throughout this problem we will use the Heisenberg picture for operators.

- a. What is the decomposition into ladder operators of the operator for a relativistic real scalar field ϕ and its conjugate momentum π ?
- b. Derive the inverse relations for the ladder operators in terms of the field ϕ and its momentum π .
- c. What is the decomposition into ladder operators of the operator for a non-relativistic complex scalar field ψ and its conjugate momentum π ?
- d. Derive the inverse relations for the ladder operators in terms of the field ψ and its momentum π .

PROBLEM 3: MAJORANA CONDITION

Instead of the Weyl condition that selects a chirality component of the Dirac spinor, one could also impose the Majorana condition. It takes the simplest form when using the Majorana representation for the gamma-matrices, given by

$$\gamma^0 = \begin{pmatrix} 0 & \sigma_2 \\ \sigma_2 & 0 \end{pmatrix} , \quad \gamma^1 = \begin{pmatrix} i\sigma_3 & 0 \\ 0 & i\sigma_3 \end{pmatrix} , \quad \gamma^0 = \begin{pmatrix} 0 & -\sigma_2 \\ \sigma_2 & 0 \end{pmatrix} , \quad \gamma^1 = \begin{pmatrix} -i\sigma_1 & 0 \\ 0 & -i\sigma_1 \end{pmatrix} ,$$

with the usual expressions for the Pauli matrices σ_i . Using this representation, the Majorana condition on Dirac spinors is given by

$$\psi = \psi^* \tag{1}$$

- a. Is this condition compatible with the Lorentz symmetry in other words, how does this condition transform under a Lorentz transformation? Proof your answer.
- b. Is this condition compatible with the massive Dirac equation in other words, how does the massive Dirac operator act on a Majorana spinor? Proof your answer.

PROBLEM 4: SPINOR REPRESENTATION

- a. What is the Lorentz transformation of a spinor ψ , and of its complex conjugate ψ^{\dagger} ?
- b. How does the combination $\bar{\psi}\psi$ transform under Lorentz transformations? Proof your answer.
- c. How does the combination $\bar{\psi}\gamma^{\mu}\psi$ transform under Lorentz transformations? Proof your answer.